Главная  Компьютер 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [ 17 ] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46]

светодиод оптически связан с фототранзистором, три вывода которого являются выходами оптрона.

По рис. 4.12 видно, что принятое расположение выводов обеспечивает максимальное расстояние между входом и выходом. Очевидно, что при такой конструкции нет необходимости делать оптрон с изоляцией, выдерживающей напряжение 3000 В, если напряжение пробоя между контактными площадками или печатными проводниками составляет всего около 500 В.

В большинстве случаев вывод базы не используется, так как транзистор переходит в проводящее состояние в результате фотоэлектрического эффекта. Тем не менее иногда встречаются схемы, где между базой и эмиттером включен резистор. Обеспечивая быстрое рассасывание накопленного в базе заряда, такое схемное решение заметно улучшает время срабатывания оптрона, но, к сожалению, за счет снижения его коэффициента усиления по току или коэффициента передачи. Надо заметрггь, что этот резистор уменьшает также и обратный ток коллектора.

В некоторых случаях вывод базы можно использовать для управления транзистором независимо от состояния светодиода, но при этом надо следить, чтобы не нарушились изоляционные свойства оптрона.

Такой распространенный оптрон как TIL 111 (аналоги МСТ 2, HI 1 А2 и т.п.) имеет напряжение изоляции 1500 В, полосу пропускания 300 кГц и коэффициент передачи тока около 8%. Это значит, что при силе тока светодиода 10 мА сила тока фототранзистора будет составлять не более 800 мкА.

Оптрон 4N28 при напряжении изоляции 500 В имеет коэффициент передачи тока 10%, тогда как 4N25 имеет такой же коэффициент передачи, но при напряжении изоляции 2500 В.

У моделей типа SL5500 (специальный телефонный оптрон) коэффициент передачи тока может составлять до 40%, при этом напряжение изоляции равно 3500 В при постоянном токе или 2500 В (эффективное) при переменном. Оптрон SL 5501, цена которого чуть ниже, имеет коэффициент передачи тока не более 15%.

Что касается оптрона CNY 17-2, широко применяемого в телефонии, то его коэффициент передачи достигает 80%, напряжение изоляции составляет 4400 В, а ширина полосы пропускания - более одного мегагерца.

Некоторые оптроны, выпускаемые в корпусах DIP8, используют фотодиод, соединенный с транзистором, не чувствительным



К излучению, а служащим лишь для усиления тока фотодиода. Так как для правильной работы на фотодиод должно быть подано обратное напряжение смещения, создающее соответствующий обратный ток, оптроны такого типа имеют дополнительный вывод для его подключения, обозначаемый VCC.

Таким образом можно получить оптроны с достаточно высоким коэффициентом передачи и с исключительным быстродействием- И МГц для элемента CNW 136 компании Hewlett-Packard. Оптрон HPCL 4562 того же изготовителя, специально предназначенный для передачи аналоговых сигналов, имеет полосу пропускания 17 МГц при коэффициенте передачи тока 200%.

Но самым популярным решением для радикального увеличения коэффициента передачи тока является применение составного фототранзистора, построенного по схеме Дарлингтона. Это решение используется при изготовлении широко распространенного оптрона 4N33, имеющего высокий коэффициент передачи тока - 500%, но полосу пропускания только 30 кГц.

Более быстродействующий оптрон CNW 139 (производитель -Hewlett-Packard) имеет рекордный коэффициент передачи 3000% -иными словами, усиление в 30 раз.

В схеме интерфейса, представленной на рис. 4.13, использованы три самых дешевых оптрона 4N33, но по необходимости для улучшения параметров этого АЦП можно применять более качественные и дорогие компоненты.

Применение оптронов с большим коэффициентом передачи позволяет обеспечить простоту схемотехнических решений, достижение которой является одной из целей данной книги.

В более серьезных проектах между оптронами и АЦП наверняка будут включаться логические схемы с триггерами Шмитта, служащими в качестве формирователей для быстроизменяющихся сигналов.

Малогабаритные последовательные АЦП способны обеспечить достаточно большие выходные токи, что позволяет подключать светодиод оптрона непосредственно к их выходам через резистор сопротивлением всего 2,7 кОм. Этого достаточно, чтобы фототранзистор оптрона нормально работал с входными линиями порта RS 232 компьютера, получая напряжение питания отлипни RXD того же порта через такой же резистор. Следует учитывать, что напряжение на этой линии более высокое - иногда выше 12 В.



CI 16V

-©-

1N4148

C2 +

100f/F 16V

Внеимй источник питании

5-158 05 X

1N4148i

R5 100 kQ

Вхед 0. +5V

lOCkQ 1 %

D4 1N4148

2,7 kQ

C3J- 7

4d6 LT1009

Vcc REF+

IC1-ADC CLOCK T1.C549IP (в-раэрвдный) - T1.C1549IP CSli

(Юизрядный)

LTC 1286 (121иэря»«й) одтд

GNO REF-

1N4148

0P2 4N33

R6 82Q

2,7 kQ

-i-D2 1N414e

0P1 4N33

2.7 kQ

D1 N4148

2.7 kO

R7 82Q

4N33

LM2g31 A2-5.0

(DTR)

-@ (RTS)

(TXD)

2,7 кП

(CTS)

Кразьему

RS232

Рис. 4.13. Принципиальная схема последовательного АЦП с оптронной развязкой



[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [ 17 ] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46]

0.0009