Главная Введение в электрику [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [ 141 ] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] 28-3. СОЕДИНЕНИЕ УСИЛИТЕЛЕЙ Для получения большого усиления, транзисторные усилители могут быть соединены вместе. Однако для избежания влияния смещения одного усилителя на работу другого, они должны соединеняться специальным образом. Используемый метод соединения усилителей не должен нарушать работу какой-либо цепи. Возможны следующие методы соединения усилителей: посредством резистивно-емкостной, импедансной, трансформаторной и непосредственной (гальванической) связей. Резистивно-емкостная связь или RC связь состоит из двух резисторов и конденсатора, соединенных как показано на рис. 28-17. Резистор является коллекторной нагрузкой первого каскада. Конденсатор является блокирующим для постоянного тока и конденсатором связи для переменного тока. Резистор R является входной нагрузкой, а также замыкает по постоянному току цепь перехода база-эмиттер второго каскада. Резистивно-емкостная связь используется, главным образом, в усилителях низкой частоты. Выход Вход Рис. 28-17. RC связь. Конденсатор связи должен иметь низкое реактивное сопротивление для минимизации ослабления сигнала на низких частотах. Обычно используется емкость в пределах от 10 до 100 микрофарад. Конденсатор связи обычно бывает электролитическим. Реактивное сопротивление конденсатора связи увеличивается при уменьшении частоты. Низкочастотная граница определяется величиной емкости конденсатора связи. Высокочастотная граница определяется типом использованного транзистора. Импедансная связь подобна RC связи, только вместо резистора в качестве нагрузки коллектора первого каскада усиления используется катушка индуктивности (рис. 28-18). Выход Вход Рис. 28-18. Импедансная связь. Импедансная связь работает совершенно аналогично КС связи. Ее преимуществом является то, что катушка индуктивности имеет очень низкое сопротивление постоянному току. Выходной сигнал переменного тока на катушке индуктивности такой же, как и на нагрузочном резисторе. Однако катушка индуктивности потребляет меньшую мощность, чем резистор, что увеличивает общую эффективность цепи. Недостатком импедансной связи является то, что индуктивное сопротивление увеличивается при увеличении частоты. Поэтому коэффициент усиления по напряжению изменяется при изменении частоты. Этот тип связи идеален для одночастотного усиления, то есть при усилении очень узкой полосы частот. В цепи с трансформаторной связью два усилительных каскада связаны между собой через трансформатор (рис. 28-19). Трансформатор может эффективно согласовать высокоим-педансный источник с низкоимпедансной нагрузкой. Недостатком этого метода является то, что трансформаторы громоздки и дороги. Кроме того, как и усилитель с импе- +Vcc9 Выход Вход Рис. 28-19. Трансформаторная связь. дансной связью, усилитель с трансформаторной связью может использоваться только в узком диапазоне частот. Когда необходимо усилить очень низкие частоты или сигнал постоянного тока, следует использовать усилитель с непосредственной (гальванической) связью (рис. 28-20). Усилители с гальванической связью обеспечивают равномерное усиление по току и напряжению в широком диапазоне частот. Усилители этого типа могут усиливать частоты от нуля герц (постоянный ток) до многих тысяч герц. Однако усилители с гальванической связью преимущественно применяются на низких частотах. Недостатком усилителей с гальванической связью является то, что они нестабильны. Любые изменения выходного тока первого каскада усиливаются вторым каскадом. Это происходит потому, что смещение второго каскада непосредственно связано с первым каскадом. Для повышения Вход Выход Рис. 28-20. Гальваническая связь. [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [ 141 ] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] 0.0014 |