Главная  Оптические магистрали 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [ 11 ] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165]

Приведем приближенные соотношения между ними, которые, однако, вполне пригодны для большинства применений

В«2Л/«1/ЛГ, (2.1.19)

откуда

(Л/)/ ~с/2 An. (2.1.20)

Следовательно, можно сказать, что в рассматриваемом примере произведение полосы пропускания на расстояние для волокна равно приблизительно 16 МГц-км.

До сих пор рассматривали только такие лучи, которые проходят через ось волокна. Это так называемые меридиональные лучи. Обычно имеются также лучи, которые распространяются в волокне и не удовлетворяют этому условию: они называются косыми лучами. Некоторые из косых лучей сохраняются в сердцевине волокна, даже если они распространяются под очень большими углами к его оси. На практике такие лучи быстро рассеиваются на изгибах и неоднородностях и покидают сердцевину, не внося, таким образом, заметного вклада во временную дисперсию. Однако строгий анализ этого явления сложен.

Вопрос о величине оптической мощности, которая может быть эффективно введена в волокно от протяженного источника, рассматривается в гл. 4. Определяемое формулой (2.1.20) произведение полосы пропускания на расстояние на практике оказывается существенно ниже реального. Из-за рассеяния в волокне большинство наклонных лучей испытывают большое затухание и при прохождении большого расстояния имеет место усреднение наклона траекторий, более близких к оси лучей. Происходящие при этом эффекты будут предметом рассмотрения в§ 6.6, а здесь отметим, что они приводят к уменьшению дисперсии и в результате в волокнах большой длины она увеличивается пропорционально корню квадратному из длины. Тем не менее дисперсия накладывает строгие ограничения на использование ступенчатых волокон, допуская их применение лишь в сравнительно коротких линиях связи со сравнительно неширокой полосой пропускания. Пример, приведенный в конце гл. 1, подтверждает это. Существует два типа волокон, в которых преодолен этот недостаток (рнс. 2.5). Первое из них, так называемое градиентное волокно (рис. 2.5,г), было очень распространено на ранней стадии развития волоконной оптики, и оно будет рассмотрено чуть позже. Изображенное на рис. 2.5, д одномодовое волокно, вероятно, станет основным типом в будущем. Оно будет описано в § 2.3 и гл. 5, где также отмечены и возможные преимущества волокна с W-профилем, изображенного на рис. 2.5, е.






Рис. 2.5. Типы оптического волокна:

а - волокио без оболочки; б - волоконный жгут; в - ступенчатое волокно; г - граднеитиое волокно; д - одномодовое волокно: е - волокно с W-образным профилен



2.1.3. Распространение саета и межмодовая дисперсия а фадиентных волокнах

Распространение света в градиентном волокне легко рассмотреть, однако строгое рассмотрение приводит к значительным математическим трудностям. Как видно из рис. 2.6, на котором изображено градиентное волокно, осевые лучи проходят через волокно кратчайшим путем, но они преодолевают участок с наибольшим значением показателя преломления, и следовательно, распространяются с наименьшей скорйстью. Наклонные лучи, наоборот, проходят по более длинным траекториям, однако большая часть их пути находится в среде с более низким показателем преломления, в силу чего они распространяются быстрее. Таким образом, можно представить себе, что при надлежащем выборе профиля показателя преломления все лучи, сходящиеся в одну точку, могут быть сфокусированы вновь, образовав периодическую последовательность точек фокуса вдоль волокна. Из принципа Ферма следует, что в таком случае аксиальные скорости лучей будут одинаковыми и, следовательно, временная дисперсия будет равна нулю.

Можно показать (см., например, § 3.2.1 в (2.11), что траектория луча, распространяющегося в неоднородной среде (с изменяющимся показателем преломления), описывается выражением

d ds

(2.1.21)

где г - вектор положения точки на пути луча, а ds расстояние, измеряемое вдоль траектории.

элементарное


Изменение поназа- flanepevHire теля преломленир сечение

Рис. 2.6. Градиентное волокно

Продольное сечение с уназанием траенторий лучей



[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [ 11 ] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165]

0.0011